If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2-4v-9=0
a = 3; b = -4; c = -9;
Δ = b2-4ac
Δ = -42-4·3·(-9)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{31}}{2*3}=\frac{4-2\sqrt{31}}{6} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{31}}{2*3}=\frac{4+2\sqrt{31}}{6} $
| 7n-20=36+9 | | -5(x+3)-42=6-28 | | 4x+12=-6x+32 | | 24x+8-28x=3-7 | | 2x=12=-51-7x | | 16h+h+-7h=-20 | | m/4=4/5 | | 11x-12/10-10x=11/10×19/10 | | 2x+-5=4x+-2 | | 4y-3y-y+2y-y=12 | | 9x+14-8x=-2-13 | | 7-g×=-4 | | 4×x-3=25 | | x+-9=-4x+39 | | 15n-11n+2n-2n+2n=18 | | 58y=3(19y+136) | | 8x+14x-20x=-10 | | w+-8w-19w+15w=11 | | -1x+16=3-3x | | -5x+16=-14-3x | | -5w−10=-3w | | 5x-4+2x+7=180 | | 2x+16=-16-3x | | -5z−-5z+9z+-18z=-18 | | 10y=8+6y | | 9d−9=10d | | 6x=5-(-1) | | 7v+4v+3v-14v+2v=12 | | -5m+6=-6 | | 2a+4a+3a=9 | | 3x+16=10-3x | | 3k-k=10 |